vault backup: 2024-03-17 18:58:39
This commit is contained in:
@@ -82,8 +82,6 @@ plt.show()
|
|||||||
|
|
||||||
## 平均客单价
|
## 平均客单价
|
||||||
|
|
||||||
为避免极端值影响,先按月份将所有数据分组,剔除前 1%和后 1%的订单后再计算平均客单价
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Attempting the analysis again with additional checks
|
# Attempting the analysis again with additional checks
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@@ -337,8 +335,6 @@ plt.show()
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
考虑到表格中的预约类型分为马上出发和预约派车两种,这意味着实际业务的发生时间往往与系统记录的订单时间不匹配,因此将预约派车类型的订单全部剔除,只研究马上出发订单的时间分布
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Filter out booked departures to focus on immediate departures only
|
# Filter out booked departures to focus on immediate departures only
|
||||||
immediate_departures = data[data['预约类型'] == '马上出发']
|
immediate_departures = data[data['预约类型'] == '马上出发']
|
||||||
@@ -370,8 +366,6 @@ plt.show()
|
|||||||
|
|
||||||

|

|
||||||
|
|
||||||
更进一步,剔除掉疫情期间的所有业务,能够较为客观地反映现在的情况
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
# Filter for immediate departures after December 2022
|
# Filter for immediate departures after December 2022
|
||||||
immediate_departures_after_dec2022 = immediate_departures[immediate_departures['YearMonth'] > '2022-12']
|
immediate_departures_after_dec2022 = immediate_departures[immediate_departures['YearMonth'] > '2022-12']
|
||||||
|
|||||||
Reference in New Issue
Block a user