vault backup: 2024-03-16 17:17:45

This commit is contained in:
2024-03-16 17:17:45 +08:00
parent 4a88fb0f96
commit 7c3c695a8e

View File

@@ -39,11 +39,174 @@ print("Files have been merged and saved as 'merged_data.xlsx'")
删去了以下列:序号、服务单号、调度单号、联系人、联系电话、患者信息、销售、介绍人、客服、调度、来源、承包组、车牌、出车成员、医护出车和任务备注
经过确认,所有调度单状态不为已返回的订单均未产生收入,故将其全部筛选出来后将总成交价一列的数值改为 0 以免影响计算结果,月营收额如下所示:
经过确认,所有调度单状态不为已返回的订单均未产生收入,故将其全部筛选出来后将总成交价一列的数值改为 0 以免影响计算结果,统计后月营收额如下所示:
| 日期 | 2022-04 | 2022-05 | 2022-06 | 2022-07 | 2022-08 | 2022-09 | 2022-10 | 2022-11 | 2022-12 | 2023-01 | 2023-02 | 2023-03 | 2023-04 | 2023-05 | 2023-06 | 2023-07 | 2023-08 | 2023-09 | 2023-10 | 2023-11 | 2023-12 | 2024-01 | 2024-02 |
| --- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- |
| 营收额 | 3328917.00 | 3362286.00 | 3973152.00 | 3462363.00 | 4250864.00 | 4144810.76 | 4360712.00 | 4587020.00 | 4880988.50 | 4197830.00 | 3309294.00 | 3338335.00 | 4069565.00 | 4292058.60 | 3101339.20 | 3834394.40 | 3114722.80 | 2750602.00 | 4161377.40 | 3465051.00 | 2898861.00 | 3426260.50 | 3559553.15 |
![image.png|600](https://image.kfdr.top/i/2024/03/15/65f453278157a.png)
# 数据分析
## 月营收趋势
```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
# Load the Excel file
data = pd.read_excel('E:/Projects/analyse/pythonProject/merged_data.xlsx')
# Convert '日期' to datetime format and '总成交价' to numeric
data['日期'] = pd.to_datetime(data['日期'])
data['总成交价'] = pd.to_numeric(data['总成交价'], errors='coerce')
# Add a column for the year and month for easier analysis
data['YearMonth'] = data['日期'].dt.to_period('M')
# Summarize monthly revenue
monthly_revenue = data.groupby('YearMonth')['总成交价'].sum().reset_index()
plt.figure(figsize=(14, 7))
plt.plot(monthly_revenue['YearMonth'].astype(str), monthly_revenue['总成交价'], marker='o')
plt.title('月营收趋势')
plt.xlabel('月份')
plt.ylabel('收入')
plt.xticks(rotation=45)
plt.grid(visible=True)
plt.tight_layout()
plt.show()
```
![image.png|600](https://image.kfdr.top/i/2024/03/16/65f5628e38f6e.png)
## 平均客单价
为避免极端值影响,先按月份将所有数据分组,剔除前 1%和后 1%的订单后再计算平均客单价
```python
# Attempting the analysis again with additional checks
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
# Load the Excel file
data = pd.read_excel('E:/Projects/analyse/pythonProject/merged_data.xlsx')
# Ensure '日期' is in datetime format for grouping
data['日期'] = pd.to_datetime(data['日期'])
# Add a 'YearMonth' column for easier analysis
data['YearMonth'] = data['日期'].dt.to_period('M')
# Group data by 'YearMonth'
grouped = data.groupby('YearMonth')
# Function to remove the top 1% and bottom 1% within each group
def remove_outliers(group):
lower = group['总成交价'].quantile(0.01)
upper = group['总成交价'].quantile(0.99)
return group[(group['总成交价'] > lower) & (group['总成交价'] < upper)]
# Apply the function to each group
filtered_groups = grouped.apply(remove_outliers)
# Reset index as the grouping operation might introduce a multi-level index
filtered_groups = filtered_groups.reset_index(drop=True)
# Group by 'YearMonth' again after filtering and calculate the average price
average_price_filtered = filtered_groups.groupby('YearMonth')['总成交价'].mean().reset_index()
# Convert 'YearMonth' to string for plotting
average_price_filtered['YearMonth'] = average_price_filtered['YearMonth'].astype(str)
# Plotting the result
plt.figure(figsize=(14, 7))
plt.plot(average_price_filtered['YearMonth'], average_price_filtered['总成交价'], marker='o', linestyle='-',
color='red')
plt.title('平均客单价每月数据去除前1%和后1%')
plt.xlabel('月份')
plt.ylabel('价格')
plt.xticks(rotation=45)
plt.grid(visible=True)
plt.tight_layout()
plt.show()
```
![image.png|600](https://image.kfdr.top/i/2024/03/16/65f55b0a3adbf.png)
## 业务时段分布
查看一天二十四小时中的业务分布情况
```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
# Load the Excel file
data = pd.read_excel('E:/Projects/analyse/pythonProject/merged_data.xlsx')
# Extracting hour from the '时间' column to analyze service demand by time of day
data['Hour'] = data['时间'].str.extract('(\d+):').astype(int)
# Analyzing service demand by hour
service_demand_by_hour = data.groupby('Hour')['日期'].count().reset_index()
# Plotting service demand by hour
plt.figure(figsize=(12, 6))
plt.bar(service_demand_by_hour['Hour'], service_demand_by_hour['日期'], color='orange')
plt.title('业务时段分布')
plt.xlabel('24 小时')
plt.ylabel('业务频次')
plt.xticks(range(0, 24))
plt.grid(axis='y')
plt.show()
```
![image.png|600](https://image.kfdr.top/i/2024/03/16/65f56155bee8d.png)
## 白班夜班比例
```python
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
# Load the Excel file
data = pd.read_excel('E:/Projects/analyse/pythonProject/merged_data.xlsx')
# Ensure '日期' is in datetime format for grouping
data['日期'] = pd.to_datetime(data['日期'])
# Add a 'YearMonth' column for easier analysis
data['YearMonth'] = data['日期'].dt.to_period('M')
# Calculate the ratio of day and night shifts
shift_ratio = data['班次'].value_counts()
# Generate a pie chart to show the ratio of day and night shifts
plt.figure(figsize=(8, 8))
plt.pie(shift_ratio, labels=shift_ratio.index, autopct='%1.1f%%', startangle=140, colors=['lightblue', 'lightgreen'])
plt.title('白班和夜班的比例')
plt.show()
# Calculate the volume of day and night shifts by month
shift_volume_by_month = data.groupby(['YearMonth', '班次'])['日期'].count().unstack(fill_value=0)
# Generate a bar chart to show the volume of day and night shifts by month
shift_volume_by_month.plot(kind='bar', stacked=True, figsize=(14, 7), color=['lightblue', 'lightgreen'])
plt.title('Volume of Day and Night Shifts by Month')
plt.xlabel('Year-Month')
plt.ylabel('Number of Shifts')
plt.xticks(rotation=45)
plt.legend(title='Shift')
plt.tight_layout()
plt.show()
```
![image.png|600](https://image.kfdr.top/i/2024/03/16/65f5617bb2942.png)
![image.png|600](https://image.kfdr.top/i/2024/03/16/65f5625b9cac2.png)